
26 The Delphi Magazine Issue 50

Under Construction:
Delphi 5 InternetExpress
by Bob Swart

Delphi 5’s InternetExpress com-
bines the WebBroker technol-

ogy with MIDAS, producing HTML
and XML as the final results, for
ultra-thin clients. InternetExpress
actually results in a 4-tier applica-
tion: database server (SQL DBMS),
middleware data server (MIDAS),
web server (WebBroker) and
finally the HTML/XML inside a web
browser. Note that the fourth tier
can actually be deployed on any
machine, even on Linux or an iMac
(as long as the browser supports
XML, or at least JavaScript).

MIDAS Server And Remote
Data Module Designer
Before we start, a little word on
MIDAS 3. This version of MIDAS,
that ships with Delphi 5, has
undergone a few changes. Proba-
bly most important is the fact that
MIDAS is now stateless, meaning
the middleware data servers no
longer keep track of the clients and
their state: we now have to keep
track of our own clients’ state. This
may seem cumbersome, but it also
enables us to use MIDAS with other
stateless solutions, such as CGI
and ISAPI web server applications.

Master-Detail Example
Since we are building a 4-tier
application, we first need to build a

middleware data server.
In our example, I’d like to
focus on the customer
and orders master-detail
relationship. This set of
tables is available to
anyone with Delphi 5.

First, start Delphi 5,
which opens up a new
default project. Save this
project in a sensible place (for
example in the C:\TDM50\Server
directory) as IxServer.dpr (and
main.pas for the form), and make
sure you put some additional com-
ponents on the default main form
to identify the MIDAS server later.
Now, do File New and add a new
Remote Data Module from the
Multitier tab in the object reposi-
tory, and call it XMidas (leave the
default choices of Multiple
Instance and Apartment, as usual),
as in Figure 1.

This will generate a new remote
data module for us, and enters us
in the new visual Data Module
Designer. Here, we can drop two
tables, and immediately see some
visual (design-time) cues that we
need to perform some additional
work on before we can actually use
them (Figure 2).

The red squares around the alias
and two tables in the left frame
(you noticed them too, didn’t
you?) are a useful indication that
we need to specify some additional

information, like the
AliasName and the
TableNames. To get rid of
these ‘error’ indicators,
we simply need to solve
the ‘problems’, or com-
plete the specifications.
So, click on Table1 and
specify DBDEMOS as the
DatabaseName. Now, we
see Table1which belongs
to the DBDEMOS alias, while
Table2 still hangs under
the red alias. We can now

either specify the DatabaseName for
Table2 to be DBDEMOS just like
Table1, or simply drag and drop
Table2 onto the DBDEMOS alias. Now,
at least the alias is known for both
tables, but we still need to specify
the two TableNames themselves
before the final two red indicators
around the tables will disappear.

In order to do just that, select
customer.db as the TableName for
Table1, and orders.db as the Table-
Name for Table2 (and rename the
tables as Customer and Orders, so
we know what data we are working
on). We can click on the + signs
next to Customer and Orders in the
left frame to drill down to detail
information on the tables, such as
Constraints, FieldDefs, Fields and
IndexDefs. Note that actual infor-
mation for the FieldDefs won’t be
available until we open the table
(set the Active property to True for
both tables). The IndexDefs
information becomes available
after we select the Update Table
Definition option with a click with
the right mouse button on the
table components (this also gives
us the FieldDefs information, in
case we didn’t open the table, so
you can shortcut this by just exe-
cuting the Update Table Definition
if you want). See Figure 3.

To get a list of the actual fields,
we can either start the fields editor
the old way, or just right-click on
the Fields and select the Add all
fields option directly (again, on

➤ Figure 1

➤ Figure 2



October 1999 The Delphi Magazine 27

both tables). As soon as the actual
fields are available, we can remove
the fields we don’t want. This is
just the old behaviour of Delphi,
except that we can now see a list of
fields right there in the left frame of
the visual data module designer.
Quite helpful again, if I may say so.

Master-Detail
Now the really interesting part
starts: it’s time to define the rela-
tionship between the Customer and
Orders tables. The old-fashioned
way would be to add a datasource
component, connect it to the Cus-
tomer table, and use this as the
MasterSource for the Orders table.
Then, we’d need to click on the
MasterFields property inside the
Object Inspector to define the
CustNo master-detail relationship
between the Customer and Orders
tables.

Fortunately, we can do it visually
this time, using the Data Diagram
tab of the visual Data Module
Designer. Just click on this tab to
see the (still empty) Data Diagram.
Now, drag the Customer and Orders
tables from the left frame over to
the Data Diagram. This will immedi-
ately show a lot of visual detail of
these two tables (Figure 4).

Now, click on the master-detail
button (third from the top), and
then take the master table (Cus-
tomers) and drag it to the detail
table (Orders). Note that the Delphi
5 on-line help incorrectly states that
we need to drag the detail to the
master, which works the other way

around. This was reported as a
problem in the Delphi 5 Release
Candidate 2 that I used for this arti-
cle, but I’m not sure it’s fixed in the
final version, so beware! You won’t
notice something’s wrong until you
actually want to use the exported
master-detail relation from a
remote client, only to discover that
there’s no detail available.

Fortunately, you can check the
final result, since the line between
the master and the detail uses a big
square to indicate the master and a
smaller one for the detail. After we
drag the master to the detail table,
we get the Field Link Designer
dialog, where we specify which
field (or fields) make up the
master-detail relationship. In this
case it’s CustNo, see Figure 5.

After we click on the Add and OK
buttons, the master-detail relation-
ship is defined. Note the Data-
Source1 component, which was
created for us to act as Master-
Source for the Orders table, just as
we would have done in the old-
fashioned way. See that the line
ends in two squares: a big one (the
master) and a little one (the slave),
and has a label identifying
the field connecting the two
tables together. If we want
to remove the master-detail
relationship, we should go
to the Components tab and
remove the DataSource com-
ponent (which is the
connecting component for
this relationship). Just
removing the relation itself
on the Data Diagram will dis-
connect the DataSource, but
not remove it, since we may

be using it for other purposes,
leaving you with an unused Data-
Source component. And they can
quickly add up, if you try adding
and removing relations just to see
what will happen. See Figure 6.

Apart from master-detail rela-
tionships, we can also use the Data
Diagram to visually define lookup
fields, add our own relationships,
custom comments, etc. And we
can print the Data Diagram or
export it to a WMF or EMF file to
include in our project documenta-
tion. This is really helpful. And of
course it also works with existing,
pre-Delphi 5, data modules. Just
open your project, drag and drop
your tables/queries and whatever
over to the Data Diagram tab, and
you’ll see the fields and the rela-
tions, etc. Wonderful.

Exporting DataSetProvider
Now, click on the Components tab of
the Data Module Designer. Move
over to the MIDAS tab on the Com-
ponent Palette, and drop a
TDataSetProvider component on

➤ Above: Figure 3

➤ Right: Figure 4

➤ Figure 5



28 The Delphi Magazine Issue 50

the data module (note that unlike
Delphi 4, we no longer have a
TProvider component, it’s all using
TDataSetProvider now). Rename
the DataSetProvider to Customer-
OrdersProvider, and connect it to
the Customer table. The Orders table
will be attached to the Customer
table as a so-called nested dataset
field (as we’ll see later on).

Again in the ‘old days’ (using
Delphi 4), we had to right-click on
the CustomerOrdersProvider to
export it from our remote data
module. Using Delphi 5, however,
this step is no longer needed: the
provider is already exported by
default. We can change this by set-
ting the value of the Exported prop-
erty in the Object Inspector (so no
right-clicking any more). This also
implies that we should be able to
dynamically define whether or not
a provider is being exported to the
outside world. This is something
we’ll test next month: it should
prove quite useful at times; for
example, depending on certain
security details, you don’t want to
‘show’ or ‘make available’ certain
providers to everyone.

The only thing left to do with the
InternetExpress MIDAS server is to
save it, compile it and run it once
on our machine, so it is registered
and available for use by the
InternetExpress clients (Figure 7).

MIDAS Client
After you’ve run the IxServer pro-
ject, close the executable and open
the Project Manager to start a new
project: our InternetExpress
MIDAS client. This is a WebBroker

application. In the
Project Manager,
right-click and
select Add New Pro-
ject. Then, select a
Web Server Applica-
tion in the Object
Repository, and
click on OK. This will
bring up the New
Web Server Appli-
cation wizard. Just
leave the default
choice of ISAPI/
NSAPI and click on

OK to create our new web module
application. Save this project as
IxClient.dpr (and use WebMod.pas
for the web module itself).

Remember that a Remote Data
Module is the most flexible of all
remote data modules when it
comes to communication proto-
cols. Where a CORBA Data Module
would require an ORB, and an MTS
Data Module would require MTS, a
standard Remote Data Module can
communicate using DCOM, sock-
ets (TCP/IP) and now with Delphi 5
even using stateless HTTP. As you
may remember, we can always
export a standard remote data
module using CORBA, to be able to
use all these protocols!

For our example this time, we’ll
focus on stateless HTTP communi-
cation (which can go through a
firewall or a proxy server). So
instead of the DCOMConnection com-
ponent we’d usually select for a
MIDAS client, we’ll now use the
new WebConnection component
from the MIDAS tab of Delphi 5.
Under this component, drop an
XMLBroker component (from the
InternetExpress tab) and finally a
MidasPageProducer component
(also from the InternetExpress
tab). As we’ve seen earlier, the
Data Module Designer indicates a
number of our components aren’t
ready yet, with red squares. So let’s
fix these problems (Figure 8).

First, click on the WebConnection
component. This has to connect to
the IxServer we just created. The
WebConnection compo-
nent can make this
contact using the HTTP
protocol. However, to
use a WebConnection, we

must make sure that WININET.DLL
is installed on the client system
(which is available if you have
Internet Explorer 3 or higher
installed). The server must also
have IIS version 4 or higher or
Netscape Enterprise version 3.6 or
higher, and finally we must install
HTTPSRVR.DLL (found in the
DELPHI5\BIN directory) in a scripts
directory on the web server that
the WebConnection component uses
to connect to. HTTPSRVR.DLL is
responsible for launching the
MIDAS middleware server, and will
marshal all calls from the client to
the application server interface.

As a direct consequence, the URL
property of the WebConnection
component must point to:

http://localhost/cgi-bin/
httpsrvr.dll

which points to the scripts direc-
tory on my local machine. I could
also have used:

http://www.drbob42.com/cgi-bin/
httpsrvr.dll

of course. Next, we can click on the
ServerName property, open up the
list of available MIDAS servers and
select the IxServer.XMidas middle-
ware server. This fixes the red
square around the WebConnection
component. We can make sure
that the connection actually works
by double-clicking on the Con-
nected property. If the value turns
into True, we’re OK. Note that we
don’t actually see the MIDAS
server running. That’s because
HTTPSRVR (started by the web
server) is actually activated by
another user (the default internet
user), and as a result we don’t see
any visual representation of the
middleware server at this time (as
we were use to when using a DCOM
or CORBA middleware server). To
make sure the server is actually
running, we can always take a look

➤ Figure 6

➤ Figure 7



30 The Delphi Magazine Issue 50

at the Task Manager, of course.
Make sure to disconnect the server
before we continue.

Now click on the XMLBroker com-
ponent and point its RemoteServer
property to the WebConnection com-
ponent. Next, it’s time to pick the
DataSetProvider we exported from
the remote server. To do this, click
on the little arrow on the right of
the ProviderName property in the
Object Inspector. This will bring
down a list of available providers
from our remote server.

Of course, the only reliable way
for Delphi to show this list of pro-
viders is simply to ask for a list
from the running middleware
server. So, when we click on the
arrow, the first result will be that
the IxServer middleware server
will be started (but again, we don’t
see a visual cue), followed by the
list of available providers that the
Object Inspector received from
this MIDAS server. In this case, we
only see the CustomerOrders-
Provider, since we only exported
one provider from the remote data
module, the master Customer table
with the detail Orders table
‘embedded’ as nested dataset field.
See Figure 9.

InternetExpress
It’s time to move on to the
InternetExpress part of this article
with the MidasPageProducer. First,
notice that the HTMLDoc property of
this component already contains a
default template inside. Don’t mess
with that (yet). Instead, right-click
on the MidasPageProducer and
select the Web Page Editor. This
brings us into the heart of the
InternetExpress visual designer.

The upper left frame lists the com-
ponents currently in use, the upper
right frame lists the child compo-
nents of the selected parent com-
ponent (in the left frame).

The lower frame has two views:
Browser and HTML. The former actu-
ally uses the TWebBrowser compo-
nent (wrapped around the IE
control) to give a visual represen-
tation of the HTML source code
which is shown in the HTML tab, of
course.

We now can design our resulting
web page, by right-clicking on com-
ponents in the left frame and
adding new components as we
need them. Note that on every level
we’ll only be able to create new
components that are actually rele-
vant. For selected components in
the upper left or right frames, we
can always use the Object Inspec-
tor to modify their property
values. We’ll get immediate visual
feedback in the Browser page,
which is quite exciting to watch!

For our master-detail example,
we probably want to have a list of
master fields, followed by a grid
showing all the detail fields. So,
let’s see how to do that.

The first time we select New Com-
ponent, we can add a DataForm,
QueryForm or LayoutGroup. Let’s
select a DataForm. Now, click on the
DataForm, and again create new
components. This time, we can
choose between a DataGrid, a
DataNavigator, a FieldGroup or a
LayoutGroup.

For our example, add a
DataNavigator, a FieldGroup,
another DataNavigator (for the
detail) and a DataGrid. We can even
go some levels deeper, by specify-
ing the fields we want to show
inside the FieldGroup or DataGrid,
or by specifying the buttons we’d

like to see in the DataNavigator
components.

Also, like the visual Data Module
Designer, we now get warnings
that show us that certain proper-
ties haven’t been assigned, yet (so
all this isn’t complete, yet). The
warnings will remain there until we
fix them, of course. See Figure 10.

First, let’s connect the two
DataNavigators to a XMLComponent.
The first one to the FieldGroup, the
second one to the DataGrid.
Second, connect the FieldGroup to
the XMLBroker component. Once we
assign the XMLBroker property of
the FieldGroup, the IxServer mid-
dleware server is launched again.
This enables the InternetExpress
Web Page Editor to provide us with
detailed information and actual
live data (at design-time).

As usual, we implicitly get all
fields (from the CustomerOrders-
Provider) from the XMLBroker. To
get them explicitly, and be able to
remove certain fields, we have to
right-click on the FieldGroup com-
ponent, and select Add All Fields.
We can now remove all fields we
don’t want to see (such as Addr2,
and so on) by selecting them in the
right frame and deleting them from
there. There’s one special field,
called FieldStatus, which holds
the status information for the cur-
rent record (M for modified, for
example, as we will see in detail
next month, when we also focus on
update and reconcile errors).

The final warning about the
DataGrid1.XMLBroker can be
resolved by assigning the XML-
Broker and XMLDataSetField prop-
erties of the DataGrid1 component.
XMLBroker must be set to XMLBroker
1 (there’s no other choice) after
which we can set the XMLData-
SetField property to Orders. This

➤ Above: Figure 8

➤ Right: Figure 9



October 1999 The Delphi Magazine 31

will ensure that the DataGrid dis-
plays the detail Orders table. By
this time, the final design-time
warning has disappeared as well.

Like before, we can right-click on
the DataGrid to Add All Fields and
then remove the fields we don’t
want to see in the grid, like
ShipToAddr2, etc. See Figure 11.

Action!
We’re almost ready. We only need
to connect the MidasPageProducer
to a WebActionItem. We can create
the latter the usual way: right-click
on the Web Module to see the
Actions Editor, and right-click
inside the Actions Editor to add a
new action. Set the default to True
(and don’t bother with the
PathInfo). In order to connect the
MidasPageProducer with this action,
we used to have to write code for
the OnAction event handler, but
with Delphi 5 we can simply assign
the MidasPageProducer to the Pro-
ducer property of the WebAction-
Item. Note that this will automati-
cally enter some information in the
PathInfo field as well, which we
would like to clear again, but are
unable to: a side effect of this way
of action-producer coupling.

Deployment
So, we’re almost ready for the final
test. Save and compile our final
WebBroker client, and put it in the
cgi-bin (scripts) directory of your
web server (IIS in this case). We
should also make sure to deploy

the JavaScript libraries from the
DELPHI5\SOURCE\WebMidas folder,
and specify this location in the
IncludePathURL of the MidasPage-
Producer (http://localhost/cgi-bin
in my case). Finally, we should
deploy MIDAS.DLL (the renamed
DBCLIENT.DLL).

A big advantage of using the
WebConnection component is that it
can be used to connect through a
firewall and use SSL security. Note
that this applies to the WebBroker
application connecting to the
MIDAS middleware application
server. The WebBroker can be out-
side of the firewall (where every-
one can ‘touch’ it), while the MIDAS
middleware application can be
safely inside the firewall (maybe
even on another machine).

When a WebConnection connects
to the MIDAS middleware applica-
tion server, it supplies the values
of the UserName and Password
properties so that it can log on to
the host or proxy. The value of
UserName and Password can be left
empty if neither the host nor proxy
requires authentication.

If we make any changes and post
them, the status will be M (for modi-
fied). If we check the internal
source code for the generated
page, we see a lot of XML inside for
the specified records. In fact,
all master-detail records are
presented using raw XML in the
web page, which uses the included
JavaScript code to parse and

➤ Figure 10

➤ Below: Figure 11

➤ Right: Figure 12



32 The Delphi Magazine Issue 50

display the data embedded in XML
inside the controls that we see in
the Figure 12. Quite ingenious, as
the resulting web page doesn’t
even need to refresh (or flicker)
when we move from one record to
another). Truly a powerful thin
client, and in my view one of the
most powerful new features of
Delphi 5!

Next Time
InternetExpress is a hybrid mix
between the WebBroker and
MIDAS Technologies. Using
InternetExpress, we can generate
N-tier but yet true thin-client web
applications that can be deployed
in any XML/JavaScript supporting
browser.

We’ve left a number of things
uncovered. Like how to handle
update errors. Or how to use the
InternetExpress components
(XMLBroker and MidasPageProducer)
without actually using MIDAS. This
and more will be covered next
time, including a way to limit the
number of XML-packages records
with the MaxRecords property of the
XMLBroker component, something
that won’t work in the current
example, so stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for TAS Advanced
Technologies and a freelance
technical author.

Editor’s Note. Together with
Marco Cantù, Bob Swart recently
received the 1999 Spirit of Delphi
award from Inprise. Congratula-
tions to them both!


	MIDAS Server And Remote Data Module Designer
	Master-Detail Example
	Master-Detail
	Exporting DataSetProvider
	MIDAS Client
	InternetExpress
	Action!
	Deployment
	Next Time

